Деформацией называется изменение формы и размеров тела под действием приложенных сил.
Внешние и внутренние силы приводят к возникновению в сечении тела напряжений.
Напряжением называется сила, приходящаяся на единицу площади сечения тела.
Под действием осевых растягивающих сил Р (рисунке 13) в плоскости m-n действуют нормальные растягивающие напряжения:
σ = P/F (H/м2 , МПа, кгс/мм2),
где F -площадь поперечного сечения.
В произвольно выбранной плоскости mi-ni площадь сечения Fa=F/Сos a, действующая сила в этом сечении Рa=Р × Cos a, нормальные напряжения
σa = Pa / Fa = σ × Cos2a, касательные напряжения τa=1/2 × σ × Sin2a.
Касательные напряжения τa, обращаясь в нуль в продольных и поперечных сечениях, имеют наибольшее значение на площадях, наклоненных под углом 450 к оси растянутого стержня: τmax = σ/2.
Рисунок 13 — Схема образования растягивающих нормальных (σ) и касательных (τ) напряжений
Деформация металла под действием напряжений может быть упругой и пластической.
Упругой называется деформация, полностью исчезающая после прекращения действия вызвавших ее напряжений.
Она не вызывает заметных остаточных изменений в структуре и свойствах металла, происходит незначительное по величине и обратимое изменение расстояний между атомами в кристаллической решетке металла (рисунке 14). С увеличением межатомных расстояний значительно возрастают силы взаимного притяжения атомов. При снятии напряжений под действием сил притяжения атомы возвращаются в исходное положение и упругая деформация исчезнет. Нормальные напряжения могут вызвать только упругую деформацию.
Если нормальные напряжения достигают величины сил межатомной связи, то произойдет хрупкое разрушение путем отрыва.
Пластической, или остаточной, называется деформация, остающаяся после прекращения действия сил, вызвавших ее.
В кристаллической решетке металла (рисунок 15) происходит необратимое перемещение атомов. После снятия напряжений в теле наблюдается остаточное изменение формы и размеров, причем сплошность тела не нарушается.
Необратимое смещение атомов на параметр решетки происходит под действием касательных напряжений. В кристаллической решетке сдвиг (скольжение) происходит по плоскостям и в направлениях с наиболее плотной упаковкой атомов. Эти плоскости называются плоскостями сдвига, или скольжения. Чем больше элементов сдвига в решетке, тем выше пластичность металла. Наиболее легкий сдвиг по этим плоскостям и направлениям объясняется тем, что при этом величина перемещения атомов из одного устойчивого равновесного положения в узле решетки в другое такое же положение будет минимальной, а следовательно, необходимое касательное напряжение — наименьшим. В результате развития пластической деформации происходит разрушение путем среза.
Для одновременного перемещения атомов в плоскости сдвига требуется очень большое напряжение, которое в сотни и тысячи раз превышает реальное сопротивление сдвигу (таблица 1).
Таблица 1 — Теоретическое и реальное сопротивление сдвигу для пластической деформации некоторых металлов
Металл | Сопротивление сдвигу, МПа | |
теоретическое | реальное | |
Железо Алюминий Медь |
2300 1900 1540 |
29 1,2…2,4 1,0 |
Расхождения между теоретическим и реальным сопротивлением сдвигу, или между теоретической и реальной прочностью при пластическом деформировании, было объяснено дислокационным механизмом пластической деформации. Для перемещения дислокаций (рисунок 16) требуется лишь незначительное перемещение атомов, и пластическая деформация совершается при небольшой величине касательных напряжений, что и соответствует экспериментальным данным.
При выходе дислокации на поверхность металла она перестает существовать, но процесс пластической деформации сопровождается не только движением дислокаций, но и их зарождением. Источниками новых дислокаций могут быть вакансии, дислоцированные атомы, границы блоков и зерен, сами дислокации, не способные перемещаться.
Пластическая деформация поликристалла принципиально идет по тому же механизму, что и рассмотренного выше монокристалла, но имеет некоторую особенность. В поликристаллическом металле зерна, а следовательно, и плоскости легкого скольжения имеют разную ориентировку.
в б а
Вследствие влияния соседних зерен деформирование каждого зерна не может совершаться свободно и начнется, когда напряжения превысят предел упругости. Сначала пластическая деформация может происходить лишь в отдельных зернах, у которых плоскости легкого скольжения совпадают с направлением максимальных касательных напряжений (под углом 450 к направлению приложенных сил). Кроме сдвига происходит и поворот частей зерна. При повороте плоскостей сдвиг облегчается. Смещение и поворот зерна приводит к повороту других зерен, в которых начинается процесс пластической деформации (рисунок 17).
В результате сдвигов и поворота плоскостей скольжения зерно (рис. 18, а) постепенно вытягивается в направлении растягивающих сил и образуется характерная ориентированная волнистая структура (рисунок 18, б), которая называется текстурой. В этом состоянии металл имеет резко выраженную анизотропию свойств, т.е. неоднородность свойств вдоль и поперек волокон. Так, вдоль волокон металл прочнее, чем в поперечном направлении.
Рисунок 17 — Схема возможных направлений плоскостей сдвига в зернах металла а — до деформации; б — после формации